Tracking Facial Features Using Mixture of Point Distribution Models
نویسندگان
چکیده
We present a generic framework to track shapes across large variations by learning non-linear shape manifold as overlapping, piecewise linear subspaces. We use landmark based shape analysis to train a Gaussian mixture model over the aligned shapes and learn a Point Distribution Model(PDM) for each of the mixture components. The target shape is searched by first maximizing the mixture probability density for the local feature intensity profiles along the normal followed by constraining the global shape using the most probable PDM cluster. The feature shapes are robustly tracked across multiple frames by dynamically switching between the PDMs. Our contribution is to apply ASM to the task of tracking shapes involving wide aspect changes and generic movements. This is achieved by incorporating shape priors that are learned over non-linear shape space and using them to learn the plausible shape space. We demonstrate the results on tracking facial features and provide several empirical results to validate our approach. Our framework runs close to real time at 25 frames per second and can be extended to predict pose angles using Mixture of Experts.
منابع مشابه
Analysis and Synthesis of Facial Expressions by Feature-Points Tracking and Deformable Model
Face expression recognition is useful for designing new interactive devices offering the possibility of new ways for human to interact with computer systems. In this paper we develop a facial expressions analysis and synthesis system. The analysis part of the system is based on the facial features extracted from facial feature points (FFP) in frontal image sequences. Selected facial feature poi...
متن کاملDynamic Tracking of Facial Expressions Using Adaptive, Overlapping Subspaces
We present a Dynamic Data Driven Application System (DDDAS) to track 2D shapes across large pose variations by learning non-linear shape manifold as overlapping, piecewise linear subspaces. The learned subspaces adaptively adjust to the subject by tracking the shapes independently using Kanade Lucas Tomasi(KLT) point tracker. The novelty of our approach is that the tracking of feature points is...
متن کاملPhoneme Classification Using Temporal Tracking of Speech Clusters in Spectro-temporal Domain
This article presents a new feature extraction technique based on the temporal tracking of clusters in spectro-temporal features space. In the proposed method, auditory cortical outputs were clustered. The attributes of speech clusters were extracted as secondary features. However, the shape and position of speech clusters change during the time. The clusters temporally tracked and temporal tra...
متن کاملModel Selection for Mixture Models Using Perfect Sample
We have considered a perfect sample method for model selection of finite mixture models with either known (fixed) or unknown number of components which can be applied in the most general setting with assumptions on the relation between the rival models and the true distribution. It is, both, one or neither to be well-specified or mis-specified, they may be nested or non-nested. We consider mixt...
متن کاملCombining Audio and Video by Dominance in Bimodal Emotion Recognition1
Emotion recognition has been one of the most important issues in human computer interaction (HCI). In this paper, we propose a novel bimodal emotion recognition approach by using the boosting-based framework, in which we can automatically determine the adaptive weights for audio and visual features. In this way, we balance the dominances of audio and visual features dynamically in feature-level...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006